4.1 Review

Converting from Degrees to Radians In Exercises 35 and 36, rewrite each angle in radian measure as a multiple of π . (Do not use a calculator.)

36. (a)
$$-60^{\circ}$$
 (b) 144°

Converting from Radians to Degrees In Exercises 37 and 38, rewrite each angle in degree measure. (Do not use a calculator.)

37. (a)
$$\frac{3\pi}{2}$$
 (b) $\frac{7\pi}{6}$

38. (a)
$$-\frac{7\pi}{12}$$
 (b) $\frac{5\pi}{4}$

Finding Arc Length In Exercises 51 and 52, find the length of the arc on a circle of radius r intercepted by a central angle θ .

51.
$$r = 15$$
 inches, $\theta = 120^{\circ}$

52.
$$r = 3$$
 meters, $\theta = 150^{\circ}$

Finding the Central Angle In Exercises 53 and 54, find the radian measure of the central angle of a circle of radius r that intercepts an arc of length s.

53.
$$r = 80$$
 kilometers, $s = 150$ kilometers

54.
$$r = 14$$
 feet, $s = 8$ feet

- 63. Angular and Linear Speeds The circular blade on a saw rotates at 5000 revolutions per minute.
 - (a) Find the angular speed of the blade in radians per minute.
 - (b) The blade has a diameter of 7¹/₄ inches. Find the linear speed of a blade tip.

4.2 Review

Determining Values of Trigonometric Functions In Exercises 5-6, determine the exact values of the six trigonometric functions of the real number t.

5. $y = \frac{\left(\frac{12}{13}, \frac{5}{13}\right)}{\theta}$

Evaluating Trigonometric Functions In Exercises 23–24, evaluate (if possible) the six trigonometric functions at the real number.

23.
$$t = 2\pi/3$$

24.
$$t = 5\pi/6$$

Using Period to Evaluate Sine and Cosine In Exercises 31-32, evaluate the trigonometric function using its period as an aid.

31.
$$\sin 4\pi$$

32.
$$\sin \frac{9\pi}{4}$$

4.3 Review

Evaluating Trigonometric Functions In Exercise 5 , find the exact values of the six trigonometric functions of the angle θ shown in the figure. (Use the Pythagorean Theorem to find the third side of the triangle.)

Using a Calculator In Exercise 31 , use a calculator to evaluate each function. Round your answers to four decimal places. (Be sure the calculator is in the correct mode.)

31. (a)
$$\cot 79.56^{\circ}$$
 (b) $\sec 79.56^{\circ}$

Evaluating Trigonometric Functions In Exercises 57–58, find each value of θ in degrees (0° < θ < 90°) and radians $(0 < \theta < \pi 2)$ without using a calculator.

57. (a)
$$\sin \theta = \frac{1}{2}$$

(b)
$$\csc \theta = 2$$

58. (a)
$$\cos \theta = \frac{\sqrt{2}}{2}$$
 (b) $\tan \theta = 1$

(b)
$$\tan \theta = 1$$

Finding Side Lengths of a Triangle In Exercise , find the exact values of the indicated variables.

63. Find *x* and *y*.

71. Length A guy wire runs from the ground to a cell tower. The wire is attached to the cell tower 150 feet above the ground. The angle formed between the wire and the ground is 43° (see figure).

- (a) How long is the guy wire?
- (b) How far from the base of the tower is the guy wire anchored to the ground?

4.4 Review

Using a Reference Angle In Exercises 53-56, evaluate the sine, cosine, and tangent of the angle without using a calculator.

55.
$$\frac{5\pi}{4}$$

56.
$$-\frac{\pi}{2}$$

Using Trigonometric Identities In Exercises 69–71, use a trigonometric identity to find the indicated value in the specified quadrant.

I	Function Value	Quadrant	Value
69. s	$\sin\theta = -\frac{3}{5}$	IV	$\cos \theta$
70. c	$\cot \theta = -3$	II	$\sin \theta$
71. t	an $\theta = \frac{3}{2}$	III	$\sec \theta$