1. Acid-Base Theories

Arrhenius:Acids – Dissociates completely to produce H^+
Bases – Dissociates completely to produce OH^- Bronsted-Lowry:Acids – H^+ (proton) donors
Bases – H^+ (proton) acceptorsHA + H₂O \leftrightarrow H₃O⁺ + A⁻
ABCACBB + H₂O \leftrightarrow BH⁺ + OH⁻
BACACB

• Example:

Write a balanced chemical equation for the reaction between N_2H_4 and H_2O that explains why a solution of N_2H_4 in water has a pH greater than 7.

$$N_2H_4 + H_2O \Rightarrow N_2H_5^+ + OH^-$$

 H^+

2. Strong and Weak Acids/Bases

Strong Acids (H⁺) - HCl, HBr, HI, HNO₃, HClO₄, H₂SO₄ Strong Bases (OH⁻) – LiOH, NaOH, KOH, RbOH, CsOH, Ba(OH)₂, Sr(OH)₂

Strong Acids and Bases are strong electrolytes, conduct electricity, and dissociate completely. $HClO_4$ is stronger than $HClO_3$ which is stronger than $HClO_2$ due to the fact that the increasing number of oxygen atoms that are attached to the central atom weakens the attraction that the central atom has for the H⁺ ion. Therefore, more oxygen atoms attached to a central atom assists in greater dissociation of H⁺.

Salts made from the conjugate of strong acids and strong bases are neutral salts when dissolved in water. Therefore, NaCl would be neutral.

Weak Acids - All others including HF and $HC_2H_3O_2$ (can abbreviate them as HA) Weak Bases - All others including NH₃ (can abbreviate them as B)

Weak Acids and Bases are weak electrolytes and do not conduct electricity well and dissociate less than approximately 5%.

Salts made from conjugates of weak acids and weak bases are basic and acidic when dissolved in water. Therefore, NaF would be a base (contains the conjugate base F) and NH₄Cl would be an acid (contains the conjugate acid NH₄⁺).

• Example:

Determine whether the pH of the following salts above, below, or equal to 7:

(a) $NaC_2H_3O_2$

pH > 7 (contains the conjugate base $C_2H_3O_2$)

- (b) KBr
 - pH = 7 (contains conjugates of strong acids and strong bases)
- (c) NH₄Br pH < 7 (contains the conjugate acid NH₄⁺)

3. pH Calculations

 $\begin{array}{l} pH + pOH = 14 \\ [H^+] \ [OH^-] = 1 \ x \ 10^{-14} \\ pH = - \log \ [H^+] \\ pOH = - \log \ [OH^-] \end{array} \qquad [H^+] = 10^{\wedge [-pH]} \end{array}$

• Example:

Calculate the pH of the following solutions. (a) 0.0015 *M* HNO₃

$$pH = -\log [H^+]$$

 $pH = -\log(0.0015) = 2.82$

$$moles = \frac{mass}{molar mass} = \frac{2.50 \text{ g}}{40 \text{ g mol}^{-1}} = 0.0625 \text{ moles } OH^{-1}$$
$$Molarity = \frac{moles}{Liter} = \frac{0.0625 \text{ moles } OH^{-1}}{0.500 \text{ L}} = 0.125 \text{ M } OH^{-1}$$
$$pOH = -\log [OH^{-1}] = -\log(0.125) = 0.90$$
$$pH = 14 - pOH = 14 - 0.90 = 13.10$$

4. Dilutions or Titrations

(Note: If adding two strong acids, you will add the moles together and divide by total new volume.

5. Titration Curves

Strong Acid Titrated with a Strong Base (Equivalence Point at pH = 7.00)

Weak Acid Titrated with a Strong Base (Equivalence Point above pH = 7.00*)*

Weak Base Titrated with a Strong Acid (Equivalence Point below pH = 7.00)

© 2013, Robert Ayton. All rights reserved. www.mrayton.com