Chapter 3 - Exponential and Logarithmic Functions Review for Quiz

Using the One-to-One Property In Exercises 17-20, use the One-to-One Property to solve the equation for x.
17. $\left(\frac{1}{3}\right)^{x-3}=9$
18. $3^{x+3}=\frac{1}{81}$
19. $e^{3 x-5}=e^{7}$
20. $e^{8-2 x}=e^{-3}$

For n compoundings per year: $A=P\left(1+\frac{r}{n}\right)^{n t}$
For continuous compounding: $A=P e^{r t}$

Compound Interest In Exercises 31 and 32, complete the table to determine the balance \boldsymbol{A} for \boldsymbol{P} dollars invested at rate \boldsymbol{r} for \boldsymbol{t} years and compounded \boldsymbol{n} times per year.

n	1	2	4	12	365	Continuous
A						

31. $P=\$ 5000, r=3 \%, t=10$ years
3.2 Writing a Logarithmic Equation In Exercises 33-36, write the exponential equation in logarithmic form. For example, the logarithmic form of $2^{3}=8$ is $\log _{2} 8=3$.
32. $3^{3}=27$
33. $25^{3 / 2}=125$
34. $e^{0.8}=2.2255 \ldots$
35. $e^{0}=1$

Evaluating a Logarithmic Function In Exercises 37-40, evaluate the function at the indicated value of x without using a calculator.
37. $f(x)=\log x, x=1000$
38. $g(x)=\log _{9} x, x=3$
39. $g(x)=\log _{2} x, x=\frac{1}{4}$
40. $f(x)=\log _{3} x, x=\frac{1}{81}$

Using the One-to-One Property In Exercises 41-44, use the One-to-One Property to solve the equation for x.
41. $\log _{4}(x+7)=\log _{4} 14$
42. $\log _{8}(3 x-10)=\log _{8} 5$
43. $\ln (x+9)=\ln 4$
44. $\ln (2 x-1)=\ln 11$
3.3 Using the Change-of-Base Formula In Exercises 59-62, evaluate the logarithm using the change-of-base formula (a) with common logarithms and (b) with natural logarithms. Round your results to three decimal places.
59. $\log _{2} 6$
60. $\log _{12} 200$
61. $\log _{1 / 2} 5$
62. $\log _{3} 0.28$

Expanding a Logarithmic Expression In Exercises 67-72, use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume all variables are positive.)
67. $\log _{5} 5 x^{2}$
68. $\log 7 x^{4}$
69. $\log _{3} \frac{9}{\sqrt{x}}$
70. $\log _{7} \frac{\sqrt[3]{x}}{14}$
71. $\ln x^{2} y^{2} z$
72. $\ln \left(\frac{y-1}{4}\right)^{2}, \quad y>1$

Condensing a Logarithmic Expression In Exercises 73-78, condense the expression to the logarithm of a single quantity.
73. $\log _{2} 5+\log _{2} x$
74. $\log _{6} y-2 \log _{6} z$
75. $\ln x-\frac{1}{4} \ln y$
76. $3 \ln x+2 \ln (x+1)$
77. $\frac{1}{2} \log _{3} x-2 \log _{3}(y+8)$
78. $5 \ln (x-2)-\ln (x+2)-3 \ln x$

