Chapter 3 - Exponential and Logarithmic Functions Review for Quiz

Using the One-to-One Property In Exercises 17–20, use the One-to-One Property to solve the equation for *x*.

17. $\left(\frac{1}{3}\right)^{x-3} = 9$	18. $3^{x+3} = \frac{1}{81}$
19. $e^{3x-5} = e^7$	20. $e^{8-2x} = e^{-3}$

For *n* compoundings per year: $A = P\left(1 + \frac{r}{n}\right)^{nt}$

For continuous compounding: $A = Pe^{rt}$

Compound Interest In Exercises 31 and 32, complete the table to determine the balance *A* for *P* dollars invested at rate *r* for *t* years and compounded *n* times per year.

n	1	2	4	12	365	Continuous
Α						

31. P = \$5000, r = 3%, t = 10 years

3.2 Writing a Logarithmic Equation In Exercises 33-36, write the exponential equation in logarithmic form. For example, the logarithmic form of $2^3 = 8$ is $\log_2 8 = 3$.

33. $3^3 = 27$	34. $25^{3/2} = 125$
35. $e^{0.8} = 2.2255 \dots$	36. $e^0 = 1$

Evaluating a Logarithmic Function In Exercises 37-40, evaluate the function at the indicated value of x without using a calculator.

37. $f(x) = \log x, x = 1000$	38. $g(x) = \log_9 x, x = 3$
39. $g(x) = \log_2 x, x = \frac{1}{4}$	40. $f(x) = \log_3 x, x = \frac{1}{81}$

Using the One-to-One Property In Exercises 41-44, use the One-to-One Property to solve the equation for x.

41. $\log_4(x + 7) = \log_4 14$ **42.** $\log_8(3x - 10) = \log_8 5$ **43.** $\ln(x + 9) = \ln 4$ **44.** $\ln(2x - 1) = \ln 11$ **3.3** Using the Change-of-Base Formula In Exercises 59–62, evaluate the logarithm using the change-of-base formula (a) with common logarithms and (b) with natural logarithms. Round your results to three decimal places.

 59. $\log_2 6$ 60. $\log_{12} 200$

 61. $\log_{1/2} 5$ 62. $\log_3 0.28$

Expanding a Logarithmic Expression In Exercises 67–72, use the properties of logarithms to expand the expression as a sum, difference, and/or constant multiple of logarithms. (Assume all variables are positive.)

67. $\log_5 5x^2$	68. $\log 7x^4$
69. $\log_3 \frac{9}{\sqrt{x}}$	70. $\log_7 \frac{\sqrt[3]{x}}{14}$
71. $\ln x^2 y^2 z$	72. $\ln\left(\frac{y-1}{4}\right)^2$, $y > $

Condensing a Logarithmic Expression In Exercises 73–78, condense the expression to the logarithm of a single quantity.

1

73. $\log_2 5 + \log_2 x$ 74. $\log_6 y - 2 \log_6 z$ 75. $\ln x - \frac{1}{4} \ln y$ 76. $3 \ln x + 2 \ln(x + 1)$ 77. $\frac{1}{2} \log_3 x - 2 \log_3(y + 8)$ 78. $5 \ln(x - 2) - \ln(x + 2) - 3 \ln x$