

Lattice Energy and Ionic Compounds Activity:

Part A

Cut out the ions and the water molecules on the given page.

- a. Arrange the ionic compounds as a solid on your desk.
- b. Then arrange the ionic compounds and the water molecules showing an aqueous solution with the dissolved ionic solid.

Question 1: Which of the three ionic compounds would have the strongest ion-to-dipole attractions between the ions and the water molecules? Explain your answer.

Question 2: Which of the three ionic compounds would have the weakest ion-to-dipole attractions between the ions and the water molecules? Explain your answer.

<u>Part 2</u>

Data Set A

	Lattice energy (kJ/mole)
LiCl	-830
NaCl	-770
KCl	-700
RbCl	-680
CsCl	-660

Data Set B

	Lattice energy (kJ/mole)
NaCl	-770
MgCl ₂	-2530
Na ₂ O	-2570
MgO	-3930
Al ₂ O ₃	-15270

- 1. Consider the data presented above:
- a. Which set of data could be analyzed to show the effect atomic size has on lattice energy? Explain your choice.
- b. Which set of data could be analyzed to show the effect ion charge has on lattice energy? Explain your choice.

- 2. Refer to the data presented above.
- a. As the ions in the solid lattice get bigger, thus making the bond length longer, what happens to the lattice energy of the solid? Note: Ignore the sign on the lattice energy. The sign is indicating that energy is released. You are interested in the magnitude of the lattice energy.
- b. Describe how your answer in part a relates to the law of Coulombic attraction between charged particles?
- 3. Refer to the data presented above.
- a. When the ions in the solid lattice have higher charges, what happens to the lattice energy of the solid?
- b. Describe how your answer in part a relates to the law of Coulombic attraction between charged particles.
- 4. Which compound in each row would have the larger lattice energy? Be prepared to justify your reasoning.

MgO	$MgCl_2$
$MgCl_2$	MgF_2
MgO	CaO
AlCl ₃	Al_2O_3

5. Match the ionic compounds below to their lattice energy.

Compound	Lattice Energy kJ/mole
LiF	-2800
Li ₂ O	-2240
KF	-1030
KBr	-820
K_2O	-680