
## NO CALCULATORS MAY BE USED FOR THESE QUESTIONS

## Questions 1-3 refer to the aqueous solutions $Pb(NO_3)_2$ and NaI.

1. When a specific amount of solid lead (II) nitrate,  $Pb(NO_3)_{2,}$  is sufficiently dissolved in 1.0 L of water, which diagram best describes a particle-view of this aqueous solution.



Answer: C – Since  $Pb(NO_3)_2$  is an ionic compound and has nitrate,  $NO_3^-$ , it will be able to dissociate in water. Therefore, there will be one  $Pb^{2+}$  (aq) and 2  $NO_3^-$  (aq).

- A is incorrect because the compound will dissociate or split up.
- B is incorrect because there is only one of each and there are no charges shown.
- D is incorrect because water will not break up the bonds of NO<sub>3</sub>.
- E is incorrect because water will not break up the compound into atoms.
- If the solution above of Pb(NO<sub>3</sub>)<sub>2</sub> is combined with an equimolar solution of NaI, what is the result? (A)No reaction
  - (B) A white precipitate of  $PbI_2$  (s)
  - (C) A white precipitate of  $NaNO_3(s)$
  - (D) A yellow precipitate of  $PbI_2(s)$
  - (E) A white precipitate of NaNO<sub>3</sub> (s)

Answer: D – According to the reaction  $Pb^{2+} + 2I^- \rightarrow PbI_2$  (s), there will be a yellow precipitate of lead (II) iodide. Na<sup>+</sup> and NO<sub>3</sub><sup>-</sup> will always be spectator ions in water and will never precipitate.

- 3. If 1.0 mole of NaI (aq) is mixed with an excess amount of Pb(NO<sub>3</sub>)<sub>2</sub>, how many moles of product will be produced.
  - (A) 0.25 moles
  - (B) 0.50 moles
  - (C) 1.0 moles
  - (D) 2.0 moles
  - (E) 3.0 moles

Answer: B – Since the reaction is  $Pb^{2+} + 2\Gamma \rightarrow PbI_2$  (s), the molar ratio of  $\Gamma$  to product is 2:1. So if there is 1.0 moles of  $\Gamma$  there will only be 0.50 moles of PbI<sub>2</sub>.

 $\underline{\quad} H_{2}\left(g\right) + \underline{\quad} O_{2}\left(g\right) \rightarrow \underline{\quad} H_{2}O\left(g\right)$ 

- 4. According to the reaction above if 0.25 moles of oxygen gas reacts with an excess amount of hydrogen gas, how many grams of water is produced?
  - (A)9 grams
  - (B) 18 grams
  - (C) 36 grams
  - (D)45 grams
  - (E) 54 grams

Answer: A – Since the balanced chemical reaction is  $2 H_2 (g) + 1 O_2 (g) \rightarrow 2 H_2O (g)$ , if there is 0.25 moles of O<sub>2</sub> then there is 0.50 moles of H<sub>2</sub>O (1:2 ratio). If there are 0.50 moles of H<sub>2</sub>O and water is 18 grams/mole, then 0.50 x 18 = 9 grams.

 $Zn(s) + 2 HCl(aq) \rightarrow ZnCl_2(aq) + H_2(g)$ 

- 5. An excess amount of Zn (s) is added to 500. mL of 0.800 M HCl. What mass in grams of  $H_2$  (g) is produced?
  - (A) 0.100 g
  - (B) 0.200 g
  - (C) 0.400 g
  - (D)0.600 g
  - (E) 0.800 g

Answer: C – Since the word "of" in chemistry means multiply, then 0.800 M x 0.500 L = 0.400 moles of HCl. If you have 0.400 moles of HCl, then you have 0.200 moles of H<sub>2</sub> (2:1 ratio according to the chemical reaction). If you have 0.200 moles of H<sub>2</sub> and H<sub>2</sub> has a molar mass of 2 grams/mole, then 0.200 x 2 = 0.400 grams.