Projectile Motion Simulation Lab

- Go to https://phet.colorado.edu/
- Go to Search and type in "Projectile Motion"
- Click on Projectile Motion (HTML5)
- Click the Play button on the Simulation Graphic
- Click on Lab

Cliff Problem (Investigating the Height and the Distance Traveled)

1. Click on the cannon and lift it up until it is at a height of 3 m
2. Click on the cannon and lower it until the angle is 0 degrees
3. Click below the cannon and change the initial speed to $16 \mathrm{~m} / \mathrm{s}$
4. Using your height of 3 m . Calculate the time it will take the cannonball to reach the ground and record it here: \qquad seconds.
5. Using your time and your initial speed, calculate the approximate distance you should place the target and record it here: \qquad meters.
6. Did you hit your target? Circle your answer: Yes or No

Doubling the Height of the Cliff

7. Click on the cannon and double the height to 6 meters high.
8. Keep the angle at 0 degrees.
9. Keep the initial speed at $16 \mathrm{~m} / \mathrm{s}$.
10. Using your new height of 6 m , calculate the time and record it here: \qquad seconds.
11. Using the new time and your initial speed, calculate the approximate distance of the target and record it here: \qquad meters.
12. Did you hit your target? Circle your answer: Yes or No
13. Did doubling the height double the original distance the cannonball traveled? Circle your answer: Yes or No

Quadrupling the Height of the Cliff

14. Click on the cannon and quadruple the initial height to 12 meters high.
15. Keep the angle at 0 degrees.
16. Keep the initial speed at $16 \mathrm{~m} / \mathrm{s}$.
17. Using your new height of 12 m , calculate the time and record it here: \qquad seconds.
18. Using the new time and your initial speed, calculate the approximate distance of the target and record it here: \qquad meters.
19. Did you hit your target? Circle your answer: Yes or No
20. Did quadrupling the height double the original distance the cannonball traveled? Circle your answer: Yes or No
21. What is the relationship between the height of a projectile and its horizontal distance traveled?

Cliff Problem（Investigating the Initial Speed and Distance Traveled）

22．Click on the cannon and lift it up until it is at a height of 10 m
23．Click on the cannon and lower it until the angle is 0 degrees
24．Click below the cannon and change the initial speed to $5 \mathrm{~m} / \mathrm{s}$
25．Using your height of 10 m ．Calculate the time it will take the cannonball to reach the ground and record it here： \qquad seconds．
26．Using your time and your initial speed，calculate the approximate distance you should place the target and record it here： \qquad meters．
27．Did you hit your target？Circle your answer：Yes or No

Doubling the Initial Speed of the Cannonball

28．Keep the height at 10 meters，keep the angle at 0 degrees，and double the initial speed to $10 \mathrm{~m} / \mathrm{s}$ ．
29．Using your height of 10 m ，calculate the time and record it here： \qquad seconds．
30．Using the time and your new initial speed，calculate the approximate distance of the target and record it here： \qquad meters．
31．Did you hit your target？Circle your answer：Yes or No
32．Did doubling the initial speed double the original distance the cannonball traveled？Circle your answer： Yes or No

Quadrupling the Initial Speed of the Cannonball

33．Keep the height at 10 meters，keep the angle at 0 degrees，and quadruple the initial speed to $20 \mathrm{~m} / \mathrm{s}$ ．
34．Using your height of 10 m ，calculate the time and record it here： \qquad seconds．
35．Using the time and your new initial speed，calculate the approximate distance of the target and record it here： \qquad meters．
36．Did you hit your target？Circle your answer：Yes or No
37．What did quadrupling the initial speed do to the original distance the cannonball traveled？
38．What is the relationship between the initial speed and the horizontal distance traveled？

Graphing：

On the axes below，sketch the graphs of the horizontal and vertical components of the cannonball＇s velocity v as a function of time t between $t=0$ ，when the cannonball is launched and $t=\mathrm{T}$ ，when the cannonball hits the target．Label $t=\mathrm{T}$ for the horizontal component of the cannonball＇s velocity and the vertical component of the cannonball＇s velocity．

Horizontal Component of Sphere＇s Velocity	Vertical Component of Sphere＇s Velocity
v_{x}	$v{ }^{\prime}$
	T－
1－1	－1，
	－1－ト＋ート
」－レ	\checkmark－ᄂ－－
－rт－rrororroro	－－－－－－T－
$\xrightarrow{\text { ¢ }}$ ， 1	－11
O	O
	1－1 1－1 1－1：
－ト＋ートートーート＋ートート＋ートー＋ー・	－ト＋ートー＋ー－ト＋－1－ト＋－1－＋－1－
－1，	$-\frac{1}{1}-\frac{1}{1}-1-\frac{1}{1}-1-1-1-10$
，	，－

