1. Stoichiometry

$$Enthalpy (J mol^{-1}) = \frac{heat (J)}{moles}$$

Exothermic Reaction (enthalpy is a product, energy is overall released, temperature of surrounding increases): H₂ (g) + Cl₂ (g) \rightarrow 2 HCl (g) + Δ H

Endothermic Reaction (enthalpy is a reactant, energy is overall absorbed, temperature of surroundings decreases): 2 HBr (g) + Δ H \rightarrow H₂ (g) + Br₂ (g)

Thermal Equilibrium: When two substances have the same average kinetic energy.

An object DOES NOT have a certain amount of heat, rather heat is transferred or exchanged exothermically and endothermically.

A catalyst lowers the activation energy and therefore speeds up the rate of a reaction by providing the reactants with an alternate pathway that has a lower activation energy. A catalyst lowers the activated complex only and is not consumed by the reaction and has no effect on the Δ H of the reaction. A catalyst also lowers the activation energy for both the forward and reverse reactions, therefore it has no effect on the equilibrium conditions.

2. Heat Calculations with Water

$$q = mC\Delta T$$

q = heat in J, m = mass, C = specific heat, $\Delta T = T_{\text{final}} - T_{\text{initial}}$ Specific Heat of water = 4.18 J g⁻¹ mol⁻¹

 Δ Hvap = Δ Hcond = Energy absorbed to vaporize one mole = Energy released to condense one mole Δ Hfusion = Δ Hmelt = Energy released to freeze one mole = Energy absorbed to melt one mole

• Example:

Li (s) + H₂O (l)
$$\rightarrow$$
 LiOH (aq) + $\frac{1}{2}$ H₂ (g)

Placing 0.500 grams of lithium in water according to the balanced reaction above was able to increase the temperature of a small beaker of 100 grams of water placed above the reaction by 38.26°C.

(a) Calculate the number of moles of lithium used in the reaction.

$$moles = \frac{mass}{molar mass}$$
$$moles = \frac{0.500 \ g}{6.941 \ g \ mol^{-1}} = 0.0720 \ mol$$

~ • ----

(b) Calculate the heat absorbed by the water.

$$q = mC\Delta T$$

$$q = (100 g)(4.18 J g^{-1} \circ C^{-1})(38.26 \circ C) = 15,993 J$$
(c) Calculate the enthalpy of the reaction in kJ mol⁻¹.

$$\Delta H = \frac{\kappa J}{mol}$$
$$\Delta H = \frac{15.993 \, kJ}{0.0720 \, mol} = 222 \, kJ \, mol^{-1}$$

3. Hess's Law

Given a list of reactions Flip reaction = flip the sign of ΔH Multiply or Divide reaction coefficients = Multiply or Divide ΔH Add up all ΔH to get $\Delta Hrxn$

• Example:

Calculate the enthalpy, Δ Hrxn, for the following reaction:

 $C_2H_4(g) + 6 F_2(g) \rightarrow 2 CF_4(g) + 4 HF(g)$

Given the reactions below:

0.10		
Reaction 1:	$H_2(g) + F_2(g) \rightarrow 2 HF(g)$	$\Delta H = -537 \text{ kJ}$
Reaction 2:	$C(s) + 2 F_2(g) \rightarrow CF_4(g)$	$\Delta H = -680 \text{ kJ}$
Reaction 3:	$2 \operatorname{C}(s) + 2 \operatorname{H}_2(g) \rightarrow \operatorname{C}_2\operatorname{H}_4(g)$	$\Delta H = +52.3 \text{ kJ}$

Reaction 1: The HF is on the product side in the target and sample reaction, therefore no flip Reaction 1: There are 2 moles of HF but you need 4, therefore multiply by 2 Reaction 1: $\Delta H = -537 \text{ kJ} \text{ x } 2 = -1,074 \text{ kJ}$

Reaction 2: The CF₄ is on the product side in the target and sample reaction, therefore no flip Reaction 2: There is 1 mole of CF₄ but you need 2, theefore multiply by 2 Reaction 2: $\Delta H = -680 \text{ kJ } x 2 = -1,360 \text{ kJ}$

Reaction 3: The C_2H_4 is on the product side but needs to be on the reactant side, therefore flip Reaction 3: There is 1 mole of C_2H_4 present and 1 mole needed, therefore do not multiply Reaction 3: $\Delta H = = -52.3 \text{ kJ}$

Note: Do not look at the F_2 since it is in more than one reaction

 $\Delta Hrxn = -1,074 \, kJ + -1,360 \, kJ + -52.3 \, kJ = -2486.3 \, kJ$

4. Standard Heats of Formation, ΔH_f

Given a heats of formation for substances $\Delta Hrxn = \Sigma H \text{ products} - \Sigma H \text{ reactants}$ $\Delta Srxn = \Sigma S \text{ products} - \Sigma S \text{ reactants}$ $\Delta Grxn = \Sigma G \text{ products} - \Sigma G \text{ reactants}$ (Don't forget to multiply by # of moles) Remember, ΔH_f for a pure element is zero.

• Example:

Given the heats of formation in the table below, calculate the enthalpy, Δ Hrxn, of the reaction:

 $2 \text{ CH}_3\text{OH}\left(g\right) + 3 \text{ O}_2\left(g\right) \ \textbf{ > } 2 \text{ CO}_2\left(g\right) + 4 \text{ H}_2\text{O}\left(g\right)$

Substance	ΔH_{f} (kJ mol ⁻¹)
CH ₃ OH (g)	-201
$CO_2(g)$	-394
$H_2O(g)$	-242

$\Delta H_{rxn} = \sum H_{f} \text{ products} - \sum H_{f} \text{ reactants}$
$\Delta H_{rxn} = [(-394 \text{ x} 2) + (-242 \text{ x} 4)] - [(-201 \text{ x} 2) + (0 \text{ x} 3)]$
$\Delta H_{\rm rxn} = (-1756) - (-402) = -1,354 \rm kJ$

5. Bond Energy

Given the energies to break bonds

Draw out all molecules (including the number of molecules)

(+) Energy for breaking bonds: Need energy to break bonds (energy is absorbed to break bonds)

(-) Energy for forming bonds: Release energy when forming bonds (energy is released when forming bonds)

Add up all energies of all bonds to get Δ Hrxn

If the Δ Hrxn is overall negative, the bond energies of the products are greater than the reactants or the energy to form bonds is greater than the energy to break bonds.

 $2 H_2(g) + O_2(g) \rightarrow 2 H_2O(g)$

• Example:

Given the bond energies in the table below, calculate the enthalpy, Δ Hrxn, of the reaction:

Bond	Bond Energy (kJ mol ⁻¹)
H-H	436
O=O	499
O-H	463

 $\frac{\text{Bonds Broken}}{2 \text{ H-H bonds}} = 2 \text{ x } 436 \text{ kJ} = 872 \text{ kJ}$

1 O=O bond = 1 x 499 kJ = 499 kJ

 $\frac{\text{Bonds Formed}}{4 \text{ O-H bonds}} = 4 \text{ x} - 463 \text{ kJ} = -1,852 \text{ kJ}$

Total energy to break bonds = 872 kJ + 499 kJ= 1,371 kJ Total energy to form bonds = -1,852 kJ

 Δ Hrxn = 1,371 kJ + -1,852 kJ = -481 kJ (Energy to form bonds or products is greater than the energy to break bonds or reactants)