Vodcast - Electrochemistry

$$14 \text{ H}^+ (aq) + \text{Cr}_2 \text{O}_7^{2-} (aq) + 6 \text{ Cl}^- (aq) \rightarrow 2 \text{ Cr}^{3+} (aq) + 7 \text{ H}_2 \text{O} (1) + 3 \text{ Cl}_2 (aq)$$

- 1. What can be stated about the oxidation number of chromium in the reaction above?
 - (A) Cr changes from -6 to +3
 - (B) Cr changes from -3 to +3
 - (C) Cr changes from +3 to +6
 - (D) Cr changes from +6 to +3
- 2. In which of the following species does sulfur have the same oxidation number as it does in H₂SO₄?
 - (A) H₂SO₃
 - (B) $S_2O_3^{2-}$
 - (C) S^{2-}
 - (D) SO_2Cl_2

$$Zn(s) + 2 Ag^{+}(aq) \rightarrow Zn^{2+}(aq) + 2 Ag(s)$$

3. Calculate the standard cell potential, E° , for the reaction above given the following half reactions:

$$Zn^{2+}$$
 (aq) + 2 e⁻ \rightarrow Zn (s) $E^{\circ} = -0.76 \text{ V}$
Ag⁺ (aq) + 1 e⁻ \rightarrow Ag (s) $E^{\circ} = 0.80 \text{ V}$

- (A) 0.04 V
- (B) 1.56 V
- (C) 1.56 V
- (D)-0.04 V

- 4. What can be stated about the galvanic cell with the overall balanced reaction above?
 - (A) Aluminum is reduced
 - (B) Aluminum is oxidized
 - (C) The voltage is negative since it is thermodynamically favorable
 - (D) The voltage is positive since it is thermodynamically unfavorable

- 5. If the half-cell containing 1.00 *M* KMnO₄ (aq) is replaced with a half-cell containing 5.00 *M* KMnO₄ (aq), what will be the effect on the system?
 - (A) The voltage will increase and the amount of CO₂ (g) will increase.
 - (B) The voltage will increase and the amount of CO₂ (g) will decrease.
 - (C) The voltage will decrease and the amount of CO_2 (g) will increase.
 - (D) The voltage will decrease and the amount of CO₂ (g) will decrease.