Week 0 - Stoichiometry (Free Response)

$6 \text{ H}^+(aq) + 2 \text{ MnO}_4^-(aq) + 5 \text{ H}_2\text{C}_2\text{O}_4(aq) \rightarrow 10 \text{ CO}_2(g) + 8 \text{ H}_2\text{O}(l) + 2 \text{ Mn}^{2+}(aq)$

A student dissolved a solid sample of oxalic acid, H₂C₂O₄, in water in an Erlenmeyer flask. Then the student titrated the H₂C₂O₄ solution in the flask with a solution of KMnO₄, which has a dark purple color. The balanced chemical equation for the reaction that occurred during the titration is shown above. The student used a 50.0 mL buret to add the KMnO₄ (aq) to the H₂C₂O₄ (q) until a faint lavender color was observed in the flask, an indication that the end point of the titration had been reached. The initial and final volume readings of the solution in the buret are shown below.

(a) Determine the volume of KMnO₄ (aq) in mL that was added from during the titration from your initial and final readings of the buret.

Week 0 - Stoichiometry (Free Response) (continued)

(b) Given that the concentration of $KMnO_4$ (aq) was 0.0235 M, calculate the number of moles of MnO_4^- ions that completely reacted with the $H_2C_2O_4$.

(c) Calculate the mass in grams of $H_2C_2O_4$ that was fully dissolved in the water in the Erlenmeyer flask.

(d) If the buret used to dispense the KMnO₄ (aq) has leftover water droplets inside it prior to adding the KMnO₄ (aq), would the mass calculated in part (c) be greater than or less than the actual mass of H₂C₂O₄ that reacted?